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SEA-AIR EXCHANGE OF ENERGY AND MOMENTS UNDER
WELL-DEVELOPED SEA CONDITIONS: THEORY AND EXPERIMENT

V.E. ZAKHAROV, P.l. AND E. KUZNETSOV, CO-PI

Ocotober 1, 1994-September 30, 19985

Our work in 1995 is going very succesfully. We received following essential
results:

1.We achieved a serious progress in numerical simulation of surface waves
on free surface of 3D deep fluid in presence of gravity and surface tension.
At the moment,using a kind of spectral code,we can perform simulation of
256 x 256 spectral modes. In this problem we use expansion of the Hamil-
tonian up to terms of fourth order in canonical variables. The developed
technique allows to solve a lot of different physical problems. So far we used
it for solving a problem of a big theoretical importance. By direct simula-
tion we comfirmed existence and stability of the weak-turbulent Kolmogorov
spectrum for capilliary waves. The result is submitted for publication to the
"Physical Review Letters” (Pushkarev, Zakharov).

2.We obtained important results in the theory of 2D fluid with a free
surface. Using conformal mapping to half plane directly in the principle of
Hamilton, we found a way of decsription of the surface which is very suitable
for numerical simulation by spectral code. The simulation can be done in
exact equations without any assumpions on a level of nonlinearity. The
developed numerical scheme allows to describe strongly nonlinear prosesses
like wave-breaking. By separating of scales we found an exactly integrable
model in the the theory of deep fluid with free surface. The model can be
applied to analytical decsription of the wave breaking and to the theory of
nonlinaer phase of the Raileigh-Taylor instability. The results were reported
on the International Symposium on Applied Mathematics in honor of 70 year
of M.Kruscal(Boulder, Colorado,August 1995) (Dyachenko, Zakharov).

3.We perfomed a numerical calculation of the Kolmogorov constant in
the theory of turbulence of ideal fluid in one-loop approximation in Clebsh
variables. The article is submitted to the "Physica D” (Balk, Pushkarev,
Zakharov).




Calculation of Kolmogorov Constant for
Hydrodynamic Turbulence

A. Balk?3, A.Pushkarev!3, V. Zakharov!?
1 Department of Mathematics, the University of Arizona
Tucson, AZ 85716, USA
and
2 Applied Mathematics, California Institute of Technology,
Pasadena, CA 91125, USA
and
3 L. D. Landau Institute for Theoretical Physics
GSP-1, 117940, ul.Kosygina 2, Moscow, V-334, Russia

Abstract

The second method of calculation of Kolmogorov constant is based
on the calculation of the analytical expression for matrix element over
eight angles in K-space. Once this expression for averaged matrix
element S(k,k;, k-, ks) is known, the problem of calculation of the
constant is reduced principally to the numerical calculation of the
integral containing function S(k,ky, k2, k3) as a kerr over some curvi-
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1 Calculation of the collision integral on the
scaling spectrum

Consider four-wave kinetic equation

0
L_47r/1 e P00k + k4 By + Ea)6(w + wy — wp — ws)

1
N e (— ! + 1 ———)dﬂ dkydhy (1)

n}; nk~] nk; 77k3

We are introducing the spherical system of coordinates in ]?-space, choos-
ing one of the axises directed along one of the diagonal of fourangle k, ky, ks, k4

(see Fig.1) :

= (kcosf,ksinfcos @, ksinfsin ¢)
i = (kicos;, kisinb; cos ¢;. k;sinf;sin¢;), 1 =1,3

Loy

>~

We are assuming further that spectrum n and dispersion wg are invariant

with respect to rotations in ];'-space. After averaging over four angles 6 and
four angles ¢ kinetic equation ( 1) takes the form:

ong dk dk, dkg dis
—= (kyky, ko k
ot kd- 1‘“‘ ./S bR S)dw dw; dwg dws

RN e Mg, Mgy
1 1 1 1
(-. 4+ —_——— - —~—> 5(u.) +w; —wy — W3)dw1d(.«,‘2dW3

Here the function S(k, k1, k2, k3) is the result of averaging of matrix ele-
ment over angles § and ¢ in K-space

S(k, by, ko, ks) =< | T oz P8k + by + by + Ka) > (Rkikohs)®™! =
- / Tz I26(F + By + B3 + F3) sin Osin 0, sin 0, sin 63d0d0, d0,d0s x
dédp1ddades(kkikoks)?™




Brackets <> mean an averaging over K-space angles.The domain of in-

tegration here is [0, 2] for angles 8 and [-%, 7] for angles 4.

The frequency and scaling spectrum are defined as

Wi = C(l/)ka

ng = Rk™ = A(v)w” (2)
where the functions C(v) and A(v) are defined by (...) and (...) cor-

respondingly. The expressions for them are, however, unimportant for our
purposes, because, as we will see, they drop out from the final expression for
the Kolmogorov constant.

We will mention here only the relations following from our definitions:

ar =V

R=C""A(v)

On scaling spectrum ( 2) the kinetic equation becomes

on AN
% _ (E) k“'d/S(k,kl,kz,kg)(wkwklwkzwks)‘f

(w,f + Wy, — Wi, — wfs) §(w + wy — wy — w3)dwrdwadws

Function S(k, k1, k2, ks) is a homogeneous one with respect to variables
w:

1 1 1 1 1 1L 1 1
S((ew)=, (ewr, )=, (€wr, )=, (€wiy )7 ) = €7 S(wo, Wi, Wi, Wi )

where the power of homogeneouty is

28 + 3d
v = ~

«

1

Using the property of gomogeneouty of the function S one can ”pull-out”
the coefficient C' out of the integration sign:
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ong ANS w, e 1 1 1 1
k I -
pm = (E) o /S(wk,w,g’],w,;’z,w,;’a)(wkwklwbwka) r
a

(w,f +wi, — Wi, — w,f3> §(w + wy — wz — w3)dw; dwydws

Here the integration is carried out over infinite domain (see.Fig.2), which
we will break into four domains I,11,/111,I1V. Making conformal mappings
of domains 11,111,V into domain I (see [1]) we get

onp <A>3 wing

ot o) (2%

x T T T wr \Y wWr, \Y wWe. \ Y
(oo -t =) (14 (2) - (22)"- (22)') »

O(w + w1 — wy — w3 )dwydwydws

11 11
/S(w,j,wﬁl,wé,wé)(wkwklwkzwks)—x x  (3)

where
y=-—y+3z~-3

Being rewritten in a form ( 3), kinetic equation explicitly exibits four
stationary scaling solutions [1]. One of them corresponds to y = 1 and
defines the final energy flux P from long to short scales. Rewriting integral
( 3) in dimensionless form on can get the expression for a collision integral
on scaling spectrum ( 2):

where

1) = [ 5 (16,66 ) (@6t (1 + & & - &)
1+ -G -6)61+4 - &~ €3)dwr dw,dws

Here &, = (%)CY are dimensionless frequencies, ¢ = 1, 3.
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Domain of integration {} is defined from the condition that four vectors
k,k1,ky,ks can form a fourangle on manifold

w+w; = wy +ws

In other words domain € is defined from the conditions

by + kg + k3 >k
W+ w =w; +ws
wsz(I/)k"

wy < w, wz3 <w

Rewriting last conditions in dimensionless units, we get:

Q:{ (§2+§3—1)§+€;‘7+§§>17 £ <1, §3<1}

This domain of integration ) is shown on Fig.3.

2 Energy flux and Kolmogorov constant

The energy flux P from the pumping region of long scales to the damping
region of short scales at intermediate "transparency” region of frequencies
wy 1s defined by the equation

O, , 0P _
at Ow
where N, and €, = wN, are the density of waves and the density of

energy in the frequency space, correspondingly.
The number of waves in frequency space N,, is connected with the number

of waves in wavenumbers space n; as

[ Nodi = [ nzdi

and, hence, in isotropical case

0 (4)




The energy flux, according to ( 4) is
. A3 I
P= ——/wNwd == —477——2—[3;—5;(,0‘”1& (5)
alC=— —y+1
For y = 1 (Kolmogorov spectrum) the expression _Ay_%— contains indeter-
minancy 2 (see Sec...) and can be regularized using L’Hopital rule:

A 9l(y)

P =A4r .
ACTES Oy

Spectral density of energy integrated over angles in ]?-spa‘ce is (see Ap-
pendiz A):

I, =4re, = 47rR2B(1/0)k'§

Comparing with definition of the Kolmogorov constant

Iy = Chotm P3 k™%

we have

Ckolm = \ 2 (6)

For the Kolmogorov spectrum we have y = yo = 1. Remembering that
for scaling spectrum we have

y=—v+3z—-3=1
a=f—azx+d
:25+3d_4

o
V= 2o




T T T We'obtain the

It is easy to see now that power of C for these values of z and « in the
expression ( 6) equal 0, i.e. C droppes out from the final expression for the
Kolmogorov constant:

Ckolm — 47r)§a0 b (l/g_) (10)
al(y 3
8y yo=1>
where
O = 5(1,65,67,67) (bt ™ 0+ 60 -6 - &)
yo=1

(51 Iné — & lnéy — &Inés) 6 (1 4 & — &2 — €3) d€dEadés

Using the expression ( 13) for S (l,f {2 &5
finally get

) from Appendiz B we

ol
7). _
<1+£1 ‘3—53)(511n§1—521n§2—¢31n§3>x
§(1 46 — & — &) derdéydés

Expressions ( 10), ( 11) and (12) present final formulae for a calculation
of Kolmogorov constant.
Taking the integral ( 11) numerically we get

- sy R (166 .6) (e ) x

Ckolm = 4.7




3 Appendix A

In the Appendiz A we are going to calculate the spectral density of energy
ex on Kolmogorov solution ( 2), v = 1y = L.
The spectral component of velocity

Uk = / b Ok — ki + kE)a;;ak; diydiy

hence
| 1 f - - e o
6 =5 < il >= §/¢1§1k§nk1nk §(k — ky + ko) dkydk,
where

Here brackets <> mean an averaging over an ensemble.
[t’s easy to see that

(;6~~—— 1 [kl_k%[kla]‘b”_l ];—{-];—(k’kl_}_kz)ig
k1ko : 2 ST ) 7 | F1 2 2
@r)f b -k 2 (2r);
where
k=ky —ky
and

. 1 1 k2 _ k2)2
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On the scaling solution ( 2) we have

]. R2 (k2 - k2)2 —u - ad — — ~—
e = gW/ [Q(kf + k) = kP = S (kaka) ™ 8(E — Ry + k) dkyds




Now we will average € over the angles in I?-space This procedure is
reduced to the averaging of é-function over these angles. It is easy to see
that
_2m
"~ kaksks

where the brackets <> mean an averaging over angles in K-space and we
have

< 6(ky ~ kp + k3) >

e = RPB(v)k>%

where

1
(27)?
Here the integration is taken over half-infinite strip A : {v < u +1,v >

u—1,v > u+ 1} (see Fig.4a). For the numerical integration purposes it’s

convenient to turn the system of coordinates by 7 Coordinate transformation

B(v) = /A [2(11'2 +vf) -1 - (u?+ v2)2] (uv)' ™ dudv

u_:z:—y+1
= 7 5

1
v=$+y+—

V22
maps the domain A into domain A’ : {—% <y< ~\}—2—,,z > 0} with
Jakobian 2024 = 1

3(z.y)
This mapping gives for Kolmogorov spectrum (v = 1)

13 23 z(z +v2)(1 - 2?)

B (?) ~ (o) /A 1)\% mdedy
(z-y+5)3(@+ty+5)°

Here the integration is carried over one half of domain A, i.e. A”: {0 <

z<00,0<y< %} (see Fig.4b).

From numerical integration we get

B (13?3) = 0.047 (12)




4 Appendix B

In the Appendiz B we are calculating an analitical expression for the average
of the matrix element over eight angles in I?—space.

The configuration of four vectors k, k:, k:;, ks is invariant with respect
to rotations around the vector § = k; — 1:3 = IE; — k_; (see Fig.1) as a whole.
This fact allows to reduce the integration over four angles ¢ to two angles ¢.

The angles 6 can be expressed through the absolute values of vectors

k= k], by = Rl ks = [k, ks = [Kal, p = [F — k| = |3 — Ko as

k2 2 _ 2

cos § __+2p—]\-2
ok

k2= p? — k2

COS 61 = 3—2—17—-13*——1—
1

B2 — 2 — 2

cosf, = —é—g—]\—ﬁ
)

12 2 _ 2

cos 03 —é——}—{)—il——-——l
2pR3

111
Using these properties we get the expression for function S(1,&7,¢&5,65)
which we will need for our purposes:

S(1,68, 65, ¢F) = -Q—gé—;)—afz(&f‘ EF 65 (E6ats) 5 (13)

where function R is the following:

R(kq,k2,K3) = |
sitms (kg — 1)2 — k2) (K2 — (1 + £2)?)((k3 — £1)% — K2)(K? — (k1 + K3)?)

2 " dk
1—Ko K
matez (k3 —1)2 — £2)(k% — (14 £3)*) (k2 = £1)* — £?)(K? = (k1 + K2)?)
+ y dk
1—-k3 K
2 2 K=K} +Hr3
-4 [(Co - Cl - %)\/ Czl{2 — C3 + C4ArcTan ( gg— - 1) - 202/{'
1
r=l—kKy
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where

Co = 1+&6+6+6

C = 2(1 — &) (6 + &)(6385 + L1683 + &)

(G+&&L+88)(E+L+1)

Co = (1=-&6PE+&E+E)(E+E+])

Cs = 3(1—£&3)%(1 — €)% (€ + &)(E265 + Eabals + €)

C, = - (1-&)1-&)E+EL+E)NE+ETDE+L+D)E + 66+ E)
V3(6 + &)(E6 + 6i6abs + )

Here k; = % and ¢ = k¢ are dimensionless wavenumbers and frequencies,

correspondingly, ¢ = 1, 3.
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ON THE TURBULENCE OF CAPILLARY WAVES

A .N.Pushkarev, V.E.Zakharov
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Abstract

An ensemble of weakly interacting capillary waves on the surface
of ideal fluid forms a kind of wave turbulence. Similary to the case of
?classical” turbulence in incompressible three-dimensional fluid, the
main physical process in this turbulence is the energy transport in
K -space from large to small scales.

According to the weak-turbulent theory, the spatial spectrum of
elevations I; =< || >? in this turbulence is the Kolmogorov-type
spectrum I ~ k~%. So far this result was not confirmed neither
experimentally nor numerically.

We developed a numerical scheme for direct simulation of the sur-
face of ideal fluid based on the expansion of the Hamiltonian of the
surface up to terms of fourth order and observed the predicted Kol-
mogorov spectrum.




Introduction

An ensemble of weakly interacting waves in a dispersive medium can be
described statistically even being very far from the state of thermodynamic
equilibrium. Due to small value of of nonlinearity the infinite system of
equations for corellation function in this case can be truncated by a consistent
way and reduced to one kinetic equation for "wave numbers” (or wave action)

on;
5, T 2 = st(n) (1)

(see, for instanse, [2]). Here 71 is the wave damping ( or the wave pumping
if vz < 0), st(n) is the "collision term” corresponding to wave equation.

The collision term describes ”cascades”-transport of wave energy in K-
space to small scales region (direct cascade) and to the large scale region
(inverse cascade). The last one existy only if the total number of waves
N = fn,;dl_c‘ is the integral of motion.

The equation

besides trivial thermodynamic solution has Kolmogorov-type solutions
describing cascades. In a medium without a characteristic length they are
powerlike functions

np k=@ (2)

The theory of weak-turbulent Kolmogorov spectra now is far advanced.
But direct experimental confirmation of these spectra are very poor. One can
consider more or less well confirmed existence of the Komogorov spectrum
for the direct cascade of gravitational wave on the surface of incompressible

deep fluid

(Here I(w)-spectral density of surface elevations, w- wave frequency, ¢
is gravity acceleration, v-wind velocity, o - dimensionless constant). This
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spectrum was theoretically derived by Zakharov and Filonenko [4] and ex-
perimentally observed by Toba [5].

Another way to check the weak-turbulent thory is numerical simulation.
Some valuable results were obtained by numerical solution of kinetic equation
( 1) [7], [8]. But the kinetic equation ( 1) is itself a subject for careful
examination. Its derivation assumes that the phases of all interacting waves
are random and are in the state of chaotic motion. The validity of this
assumption is no clear apriory.

The right way to check the weak-turbulent theory and its prediction is
numerical simulation "from the first principles”, i.e. direct solution of the
nonlinear dynamic equation governing propagation and interaction of the
waves.

In real cases these equations are of two or three spatial dimensions, and
its numerical solution is not a simple problem. It was done so far for 2D
Nonlinear Schroedinger Equation [10], but in this particular case Kolmogorov
spectra don’t exist.

In this paper we present results of numerical simulation of capillary waves
on the surface of the incompressible infinitely deep fluid. In this case only
direct cascade of energy takes place. Corresponding Kolmogorov spectrum
for the surface elevation has a form [ ~ L. We will show that this
theoretical prediction is confirmed by direct numerical simulation with good
accuracy. The developed numerical approach can be used for solution of a
wide class of problem pertained to interaction of surface waves and - more
generally - other types of waves in nonlinear media.

Theoretical background

We study the potential flow of ideal incompressible deep fluid with the free
surface. Let 75(7,t), ¥ = (z,y) is the shape of the surface, (7, 1) is the
velocity potential & = @®(7,z), ¥ = V&, A® = 0, evaluated on the free
surface: U(F,t) = ®(n(7,t),7,t). It is known [9] that under these assumption
the fluid is a Hamiltonian system:

on _ 6H
3 - 50 ()




ov oH

R (4

Here H is the total energy of the fluid consisting of the kinetic and the
potential components

H = Hpot + Hkin (5)

where

Hy = o [[(1+ (Va))} - 1)d7

1 o
H,,, = é/dn /_m dz(VO)?

Here o is a coeflicient of surface tension.

Direct numerical simulation of the system ( 3), ( 4) provides solution of
the boundary problem for the Laplace equation on each step in time. In full
3D case it is enormously hard problem. To solve the problem one can use an
expansion in powers of nonlinearity. For Fourler transforms this expansion
up to the quadratic terms has a form:

H = Ho+H,+H,+ ..

1 -

Ho = o [ (ke + olk)lngl?] dF
1

2 X 2%

1 = = s o oo oo
H, = 1) / My o0 V¥ ngng 6k + ki + kg + ks)dkdky dkydks

H] = /Lk:kzd)kjlbk;nkg&(gl+EQ+E3)dEldE2dE3
Leg = Bk + 0I5

R S oA V- - -

Miggg = IRIRIGUR + Bl 4+ B+ Bl + 16 + k) + 16 + F))
—[ka| = |ka]]

Corresponding dynamic equations are

a;[ = [lklg]. - div(nVe) — [k [[k1] . x ne] + IR [u;; ([1ER], x 7] x 7,;]

-
T




o [[lbl] % 0]+ 51k [Ar ]

— = ocAms+ %‘ [—(V¢)2+ [|]AC|¢]3 = Ik HV»W’L X 77;]? X [Iifll/’]r.
— A x [Iiz[@b] X nr+ D+ F>

We added to the equation ( 7) a phenomenological damping term D and
the external force Fx(t).

In the linear approximation the equations ( 6) and ( 7) describe capillary
waves with the dispersion relation

Wi = (O’ATS)%

One can introduce normal amplitudes

ok? |k y
ap = A\[—ng — 1 T
=\ oL, T 2p F

According to the weak-turbulent theory the pair corellation function

< apay >= n,;é(E — k)

satisfies the kinetic equation ( 1), where

st(n) = / (Rici — Rors — Ripg) dkdky

2 - — —
Rﬁk]kg = 47|ng~lk~2| 6(k — ky — ky)é(wp — wg, — w,;z)
["&”k‘z TRERE T ”Enk‘z]
S 27 . .o 2T o o
Ver o = : (Why Why Wy ) ? Hlig  klig,  Klig,
- 5
kiake 2307 o kyky kk, kk,

In isotropic medium containing no characteristic length the dispersion
relation is a power-like function




Wi ™ k°

as far as Vzz » is a homogeneous function
Rk ks

I c VT
Rk eby = € ‘kklkz
In this case the equation

st(n) =0

has exact powerlike solution

Pz
nk:c];ﬁ-#d

ﬁ__Q

constant flux of energy in A'-space from large to small scales. P is the value

(d is dimension of space), which is Kolmogorov-type spectrum describing
of the energy flux, C is an absolute constant. For capillary waves a =
=3, d=2. Hence

3
99

5 wp Co~ips
Ik =< |T]k| >= O'kz—- 9

This result was obtained first by Zakharov and Filonenko [4]. The solution
( 8) is linearly stable in framework of the kinetic equation ( 1) (see [11]).




Numerical simulation

We realized numerical simulation of the system ( 6), ( 7). In spite of the
fact that the matrix element of the kinetic equation Vi 5 1s expressed only
through coefficients of the Hamiltonian Ho, H; we prefer to keep the next
term H; in the expansion of the Hamiltonian. The reason for that is the
following - it can be shown that the dynamical system generated by the
Hamiltonian Hy + H; becomes ill-posed at very low levels of nonlinearity.
Meanwhile, including into consideration the next term of expansion improves
the situation essentially (details of the consideration will be published sepa-
rately). Moreover, the developed scheme after a minor modification can be
used for numerical simulation of the gravitational waves.

The equations ( 6) and ( 7) are not differential in the X-space. Besides
taking derivatives they include taking of the operator |k ((—A)? in X-space).

So, the system can be reduced to the set of 6 PDE for the variables
interconnected by the consequent application of the operator (—A)%. It
allows to apply for solution of the system ( 6) and ( 7) the spectral code
using the Fast Fourier Transform on each step of time. Omitting the details
of numerical scheme, we reproduce now only the final result of calculation.

For numerical integration of the equations ( 6)-( 7) we used the functions
F and D defined at Fourier space through the following relations :

Dy = w¥%
O = wp(1+R(1)

B (1 N D e
Tk 0 H0<Ek<k

Pumping force Fy is "almost” in resonance with local linear frequency wy
of the corresponding Fourier-garmonics, i.e. frequency 2 slightly fluctuate
around exact value of wy, due to small random in time addition R(t). The form

N | ('
of pumping amplitude was chosen to be axially-symmetric fi = foe\ *2

Value ko defines starting point of "hyperviscosity” we used in our exper-

iments to provide wide enough intertial interval. Calculations were carried

out on the grid 256 x 256.




System was driven by forcing F' localized at small wavenumbers. After a
while, we observed formation of the stationary spectrum of waves carrying
constant in time energy flux to the high k due to nonlinear interaction of
waves. Observed spectrum was characterized by angular isotropy and being
averaged over the angles in K -space apeared to be in a good agreement for the
inertial interval with the spectrum predicted by the weak-turbulent theory
( 8).

This stationary spectra were obtained for and nonlinearity levels ﬁH,ﬁ? o
0.05 (here H; and H, are linear and nonlinear part of the energy).

Conclusions

Summarizing the results we can conclude that the direct numerical simulation
of the dynamic nonlinear equation confirms an existence and important role
of the weak-turbulent Kolmogorov spectra at least in the case of capillary
waves. Indirectly this result confirms the validity of the kinetic equation for
a description of the wave turbulence. We hope that the developed effective
approach will allow us to study numerically other types of wave turbulence,
first of all - the behavior of a system of wind-driven gravitational waves on
the sea-surface.
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